ENG  RUSTimus Online Judge
Online Judge
Задачи
Авторы
Соревнования
О системе
Часто задаваемые вопросы
Новости сайта
Форум
Ссылки
Архив задач
Отправить на проверку
Состояние проверки
Руководство
Регистрация
Исправить данные
Рейтинг авторов
Текущее соревнование
Расписание
Прошедшие соревнования
Правила
вернуться в форум

Обсуждение задачи 1260. Фотограф-зануда

Страницы: 1 2 Следующая
How to slove it?? Any hints?
Послано tbtbtb91 1 апр 2004 19:16
Re: How to slove it?? Any hints?
Послано Gheorghe Stefan 2 апр 2004 02:44
let A[i][j] be the number of i permutations that start with j and we jump 2. The recurrence is:
a[i][1] = a[i - 1][1] + a[i - 1][2],
a[i][2] = a[i - 1][2] + a[i - 3][2]
Re: How to slove it?? Any hints?
Послано tbtbtb91 3 апр 2004 13:31
I use the same methon...But I got Wa????
Re: How to slove it?? Any hints?
Послано timgreen 3 апр 2004 13:35
We can do it more easyly!
Just think of this:
1 2 ... means N - 1;
1 3 2 4 means N - 3;
1 3 5 7...6 4 2 only 1;
1 3 4 2 (only N == 4);
So we can DP;
Re: How to slove it?? Any hints?
Послано VladG 3 апр 2004 14:30
test
Re: How to slove it?? Any hints?
Послано Pavlov Yuriy 3 апр 2004 20:04
You can using this:

  Initilization:
  a[1]:=1;
  a[2]:=1;
  a[3]:=2;

  And solve:
  a[i]:=a[i-1]+a[i-3]+1;

So, your answer in a[n]
Re: How to slove it?? Any hints?
Послано tbtbtb91 3 апр 2004 20:14
I konw why I was WA...... Very thanks!!!!
Re: How to slove it?? Any hints?
Послано Горыныч 9 апр 2004 18:10
I've solved it with help of asympthotic. Starting from 20 - 25-th member (it can be found recursively) - a[i] ~ a[i-1]*(a[i-1]/a[i-2])
Re: How to slove it?? Any hints?
Послано Valentin Mihov 10 апр 2004 02:03
Well, actually I decovered this formula after writing brute force algorithm. I am wondering how it could be proven.

Any ideas?

Edited by author 10.04.2004 02:04
Re: How to slove it?? Any hints?
Послано hello 17 май 2004 16:21
I don't understand your formula .
Could you explain ?
Re: How to slove it?? Any hints?
Послано Sandro 29 май 2004 19:43
But Timgreen had almost proved it.
Re: How to slove it?? Any hints?
Послано young master 19 июн 2004 22:06
write the permutations down and look it carefully as hard as you can and you'll find out sth useful for you associated with the informations provided above by all the upper friends...
The proof of a[i]=a[i-1]+a[i-3]+1;
Послано Maigo Akisame (maigoakisame@yahoo.com.cn) 24 авг 2004 20:46
Take i=5 for example

The permutations are:

1 2 3 4 5
1 2 3 5 4
1 2 4 3 5
1 2 4 5 3
1 3 2 4 5
1 3 5 4 2

a[i-1] stands for the first four, beginning with '1 2'. If you ignore 1, you have the same prob for N=i-1.
a[i-3] stands for the fifth, beginning with '1 3 2 4'. If you ignore 1, 3, 2, you have the same prob for N=i-3.
And a special case (the last) -- all the odds in increasing order, followed by all the evens in decreasing order. The is what the +1 in the formula means.

Good luck!
Re: The proof of a[i]=a[i-1]+a[i-3]+1;
Послано Ayhan Aliyev 3 июн 2006 23:01
thanks for explanation.
Another method
Послано it4.kp 17 авг 2006 15:10
I used another method to solve this.

Suppose we have N numbers.
We will care about five possible configurations:

K(n)  ... n n-1 ...
T(n)  ... n-1 n ...
E(n)  ... n-2 n
P(n)  ... n n-1
S(n)  ... n-1 n

here K(n) is the number of correct configurations of the first type and so on.

It's clear that the answer for N will be K(N)+T(N)+E(N)+P(N)+S(N).

So, what we need to do is understand how to get K(n+1),T(n+1)... from K(n),T(n),...

And it is very easy to see that following is true:

K(n+1) = T(n)
T(n+1) = K(n)+P(n)
E(n+1) = P(n)
P(n+1) = S(n)
S(n+1) = S(n)+E(n)
Re: How to slove it?? Any hints?
Послано ₦Å_̅Ϊ_̅ύ®@₤ 29 ноя 2007 01:41
Can somebody give tests? for exmaple for 6,10,55... Thanks.
6,10,55 tests
Послано manishmmulani 2 янв 2008 01:40
for 6 , ans = 9
for 10, ans = 46
for 55, ans = 1388937263
Re: How to slove it?? Any hints?
Послано ConanKudo 14 июл 2008 22:22
my formula is:
a[i][1] = a[i-1][1] + a[i-2][2]
a[i][2] = a[i-2][1] + 1
But i don't understand your formula?
Could you explain??

Edited by author 14.07.2008 22:25
Re: How to slove it?? Any hints?
Послано Zaven Musailov 5 дек 2008 17:56
Can you explain your formul?how should I use it!)
Re: The proof of a[i]=a[i-1]+a[i-3]+1;
Послано Ankit Mehta 26 апр 2012 23:44
I don't know if we can call this a proof. This is an observation I guess.
Maigo Akisame (maigoakisame@yahoo.com.cn) писал(a) 24 августа 2004 20:46
Take i=5 for example

The permutations are:

1 2 3 4 5
1 2 3 5 4
1 2 4 3 5
1 2 4 5 3
1 3 2 4 5
1 3 5 4 2

a[i-1] stands for the first four, beginning with '1 2'. If you ignore 1, you have the same prob for N=i-1.
a[i-3] stands for the fifth, beginning with '1 3 2 4'. If you ignore 1, 3, 2, you have the same prob for N=i-3.
And a special case (the last) -- all the odds in increasing order, followed by all the evens in decreasing order. The is what the +1 in the formula means.

Good luck!
Страницы: 1 2 Следующая