ENG  RUSTimus Online Judge
Online Judge
Задачи
Авторы
Соревнования
О системе
Часто задаваемые вопросы
Новости сайта
Форум
Ссылки
Архив задач
Отправить на проверку
Состояние проверки
Руководство
Регистрация
Исправить данные
Рейтинг авторов
Текущее соревнование
Расписание
Прошедшие соревнования
Правила
вернуться в форум

Обсуждение задачи 1580. Долги декана

How about case M>N(+)?
Послано SPIRiT 29 окт 2007 23:18
I think it's clear for the system of linear equations, that if M<N, than it's impossible. If M=N then it may be possible (and I know how to check). How about case M>N? We need to select N pairs that get an unambiguous solution?
Re: How about case M>N(+)?
Послано Alexander Georgiev 15 фев 2008 17:40
You have to keep only the lineary independet ones, I think.
What I did is I kept only the first 5 ones, which contain certain number (so the matrix in the end was at most 5000 rows long, containing at least 5 rows, containing a digit at each position) and it passed system test (otherwise the solution was right, but too slow)
Re: How about case M>N(+)?
Послано Denis Koshman 19 авг 2008 19:57
Just find at least one odd loop in each connected component
Re: How about case M>N(+)?
Послано test 24 апр 2010 20:49
Denis Koshman писал(a) 19 августа 2008 19:57
Just find at least one odd loop in each connected component

hmm i make this but i get TLE( test 12)... (with a BFS) any ideea why?
Re: How about case M>N(+)?
Послано ARK (***AESC_USU***) 20 янв 2018 04:29
Alexander Georgiev писал(a) 15 февраля 2008 17:40
What I did is I kept only the first 5 ones, which contain certain number
Strange. It will not work for this test (A_i can be arbitrary).

43 43
2 3 0
1 2 0
1 3 0
1 4 0
1 5 0
1 6 0
1 7 0
2 8 0
2 9 0
2 10 0
2 11 0
2 12 0
2 13 0
3 14 0
3 15 0
3 16 0
3 17 0
3 18 0
3 19 0
4 20 0
4 21 0
4 22 0
4 23 0
4 24 0
4 25 0
5 26 0
5 27 0
5 28 0
5 29 0
5 30 0
5 31 0
6 32 0
6 33 0
6 34 0
6 35 0
6 36 0
6 37 0
7 38 0
7 39 0
7 40 0
7 41 0
7 42 0
7 43 0

Edited by author 20.01.2018 04:30