if the cube is at e2, neighbors are: e1 (near), e3 (far), d2 (left) and f2 (right) the output part states that: "The only line of the output must contain the minimal sum followed by the optimal route (one of possible routes with minimal sum)", but I got wrong answer! why? my output for sample input is: 5 e2 e1 d1 d2 e2 e3 I think it's also right. um I think so Yes Right! my AC program outputs "5 e2 e1 d1 d2 e2 e" for sample test :) 5 e2 e1 d1 d2 d3 e3 is another correct answer for the sample input. a1 h1 0 0 10 0 0 10 i think the answer is : 0 a1 b1 b2 a2 a1 b1 c1 d1 e1 f1 g1 h1 i think you are wrong. My program tell that the minimal path is 20! My solution got AC. And it's answer for this input is: 0 a1 a2 b2 c2 c1 b1 b2 c2 d2 d1 c1 c2 d2 e2 e1 d1 d2 e2 f2 f1 e1 e2 f2 g2 g1 f1 f2 g2 h2 h1 i got ac, my answer is 0 a1 a2 b2 b1 a1 a2 a3 b3 b2 a2 a3 a4 b4 b3 a3 a4 a5 b5 b4 a4 a5 a6 b6 b5 a5 a6 a7 b7 b6 a6 a7 b7 b8 a8 a7 b7 b8 a8 a7 b7 c7 c8 b8 b7 c7 d7 d8 c8 c7 d7 e7 e8 d8 d7 e7 f7 f8 e8 e7 f7 g7 g8 f8 f7 g7 h7 h8 g8 g7 h7 h8 g8 g7 g6 h6 h7 g7 g6 g5 h5 h6 g6 g5 g4 h4 h5 g5 g4 g3 h3 h4 g4 g3 g2 h2 h3 g3 g2 g1 h1 my answer is: 0 a1 a2 b2 c2 c1 b1 b2 c2 d2 d1 c1 c2 d2 e2 e1 d1 d2 e2 f2 f1 e1 e2 f2 g2 g1 f1 f2 g2 h2 h1 g1 g2 h2 h1 my ac answer is : 0 a1 a2 b2 c2 c1 b1 b2 c2 d2 d1 c1 c2 d2 e2 e1 d1 d2 e2 f2 f1 e1 e2 f2 g2 g1 f1 f2 g2 h2 h1 g1 g2 h2 h1 I got you all beat, my answer is: 0 a1 b1 b2 a2 a1 b1 b2 b3 a3 a2 b2 b3 b4 a4 a3 b3 b4 b5 a5 a4 b4 b5 b6 a6 a5 b5 b6 b7 a7 a6 b6 b7 b8 a8 a7 b7 b8 a8 a7 b7 c7 c8 b8 b7 c7 d7 d8 c8 c7 d7 e7 e8 d8 d7 e7 f7 f8 e8 e7 f7 g7 g8 f8 f7 g7 h7 h8 g8 g7 h7 h8 g8 g7 h7 h8 g8 f8 f7 g7 g8 f8 e8 e7 f7 f8 e8 d8 d7 e7 e8 d8 c8 c7 d7 d8 c8 b8 b7 c7 c8 b8 a8 a7 a6 b6 b7 c7 c6 b6 b7 c7 d7 d6 c6 c7 d7 e7 e6 d6 d7 e7 f7 f6 e6 e7 f7 g7 g6 f6 f7 g7 h7 h6 g6 g5 h5 h6 g6 g5 h5 h6 g6 f6 f5 g5 g6 f6 e6 e5 f5 f6 e6 d6 d5 e5 e6 d6 c6 c5 d5 d6 c6 b6 b5 c5 c6 b6 a6 a5 a4 b4 b5 c5 c4 b4 b5 c5 d5 d4 c4 c5 d5 e5 e4 d4 d5 e5 f5 f4 e4 e5 f5 g5 g4 f4 f5 g5 h5 h4 g4 g3 h3 h4 g4 g3 h3 h4 g4 f4 f3 g3 g4 f4 e4 e3 f3 f4 e4 d4 d3 e3 e4 d4 c4 c3 d3 d4 c4 b4 b3 c3 c4 b4 a4 a3 a2 b2 b3 c3 c2 b2 b3 c3 d3 d2 c2 c3 d3 e3 e2 d2 d3 e3 f3 f2 e2 e3 f3 g3 g2 f2 f3 g3 h3 h2 g2 g1 h1 h2 g2 g1 h1 h2 g2 g1 h1 alot of time in debugging though ! :) Edited by author 21.11.2015 16:12 package timus; import java.io.InputStream; import java.io.InputStreamReader; import java.util.LinkedList; import java.util.Scanner; public class p1016_ { static Integer sx, sy, ex, ey;
public static void main(String[] args) { InputStream is = System.in; Scanner sc = new Scanner(new InputStreamReader(is)); String S = sc.next(); char[] s = S.toCharArray(); String E = sc.next(); char[] e = E.toCharArray(); sx = s[0]-'a'; sy = 8 - (s[1]-'0'); ex = e[0]-'a'; ey = 8 - (e[1]-'0'); int a[] = new int[6]; for (int i=0; i<6; i++) { a[i] = sc.nextInt(); } for (int i=0; i<24; i++) { int b[] = R[i]; bottoms[i] = a[b[4]]; } //======= for (int r=0; r<24; r++) { int next[] = moves[r]; long costToMove[] = new long[4]; for (int i=0; i<4; i++) { costToMove[i] = bottoms[next[i]]; } for (int y=0; y<8; y++) for (int x=0; x<8; x++) { totalCost_TO_YX24[y][x][r] = MAX; //l r u d for (int i=0; i<4; i++) { costYX24lrud[y][x][r][i] = MAX; } if (x>0) costYX24lrud[y][x][r][0] = costToMove[0]; if (x<7) costYX24lrud[y][x][r][1] = costToMove[1]; if (y>0) costYX24lrud[y][x][r][2] = costToMove[2]; if (y<7) costYX24lrud[y][x][r][3] = costToMove[3]; } } LinkedList<Integer> X = new LinkedList<Integer>(); LinkedList<Integer> Y = new LinkedList<Integer>(); LinkedList<Integer> St = new LinkedList<Integer>(); LinkedList<Integer> Dir = new LinkedList<Integer>(); totalCost_TO_YX24[sy][sx][0] = bottoms[0];
LinkedList<Integer> X0 = new LinkedList<Integer>(); LinkedList<Integer> Y0 = new LinkedList<Integer>(); LinkedList<Integer> St0 = new LinkedList<Integer>(); X0.add(sx); Y0.add(sy); St0.add(0);
while( !X0.isEmpty() ) { Integer x = X0.removeFirst(); Integer y = Y0.removeFirst(); Integer st = St0.removeFirst(); if (x>0) {X.add(x-1); Y.add(y); St.add(moves[st][0]); Dir.add(0);} if (x<7) {X.add(x+1); Y.add(y); St.add(moves[st][1]); Dir.add(1);} if (y>0) {X.add(x); Y.add(y-1); St.add(moves[st][2]); Dir.add(2);} if (y<7) {X.add(x); Y.add(y+1); St.add(moves[st][3]); Dir.add(3);} while ( !X.isEmpty() ) { Integer x1 = X.removeFirst(); Integer y1 = Y.removeFirst(); Integer st1 = St.removeFirst(); int dir1 = Dir.removeFirst(); long cost1 = costYX24lrud[y][x][st][dir1] + totalCost_TO_YX24[y][x][st]; if (totalCost_TO_YX24[y1][x1][st1]>cost1) { totalCost_TO_YX24[y1][x1][st1] = cost1; prevDir[y1][x1][st1] = dir1; prevSt[y1][x1][st1] = st; X0.add(x1); Y0.add(y1); St0.add(st1); } } } long min = MAX; int st = -1; for (int i=0; i<24; i++) { if (min > totalCost_TO_YX24[ey][ex][i]) { min = totalCost_TO_YX24[ey][ex][i]; st = i; } } //PRINT int x = ex; int y = ey; LinkedList<String> route = new LinkedList<String>(); while(x != sx || y!= sy || st!=0) { route.add(0, tok(x,y)); int dir = prevDir[y][x][st]; st = prevSt[y][x][st]; x += xS[reverse[dir]]; y += yS[reverse[dir]]; } route.add(0,tok(sx,sy)); System.out.print(min); for (String mv: route) System.out.print(" " + mv); }//lrud reversed RLDU static int prevDir[][][] = new int[8][8][24]; static int prevSt[][][] = new int[8][8][24]; static long[][][][] costYX24lrud = new long[8][8][24][4]; static long[][][] totalCost_TO_YX24 = new long[8][8][24]; static String tok(int x, int y){ char ah = (char) ('a'+x); char oe = (char) ('1'+(7-y)); return ah+""+oe; } static long MAX = Long.MAX_VALUE/3; static int xS[] = new int[]{-1,+1,0,0}; static int yS[] = new int[]{0,0,-1,+1}; static int reverse[] = new int[]{1,0,3,2}; //======================================================== static int R[][] = new int[][]{ //front, back, up, right, down, left {0,1, 2,3,4,5}, {0,1, 5,2,3,4}, {0,1, 4,5,2,3}, {0,1, 3,4,5,2}, {1,0, 2,5,4,3}, {1,0, 3,2,5,4}, {1,0, 4,3,2,5}, {1,0, 5,4,3,2}, {3,5, 0,2,1,4}, {3,5, 4,0,2,1}, {3,5, 1,4,0,2}, {3,5, 2,1,4,0}, {5,3, 0,4,1,2}, {5,3, 4,1,2,0}, {5,3, 1,2,0,4}, {5,3, 2,0,4,1}, {4,2, 1,5,0,3}, {4,2, 3,1,5,0}, {4,2, 0,3,1,5}, {4,2, 5,0,3,1}, {2,4, 1,3,0,5}, {2,4, 3,0,5,1}, {2,4, 0,5,1,3}, {2,4, 5,1,3,0}, }; //l r u d static int moves[][] = new int[][] { {3, 1, 18, 20}, {0, 2, 8, 14}, {1, 3, 22, 16}, {2, 0, 12, 10}, {7, 5, 16, 22}, {4, 6, 14, 8}, {5, 7, 20, 18}, {6, 4, 10, 12}, {11, 9, 5, 1}, {8, 10, 21, 19}, {9, 11, 3, 7}, {10, 8, 17, 23}, {13, 15, 7, 3}, {14, 12, 23, 17}, {15, 13, 1, 5}, {12, 14, 19, 21}, {19, 17, 2, 4}, {16, 18, 13, 11}, {17, 19, 6, 0}, {18, 16, 9, 15}, {21, 23, 0, 6}, {22, 20, 15, 9}, {23, 21, 4, 2}, {20, 22, 11, 13}, };
static int bottoms[] = new int [24]; } You can solve that with algo Djikstra. We have 6!*8*8 vertex (hash of cube and point) . And all vertexs have <=4 edges. P.s. sry for English ) Edited by author 09.08.2014 16:51 Could you give me some tests? What is Test#4? Edited by author 06.04.2008 17:03 Me either,need help! Can anyone give me a test for this problem?Thanks! Edited by author 21.09.2010 18:07 Edited by author 21.09.2010 18:08 Who can help me?(give me Test#1) Thanks very much. And where is "forward"? I think the chessboard if like this: H G F E D C B A 1 2 3 4 5 6 7 8 Is it right?
Edited by author 24.08.2007 21:17 I do not think so I think it is like this:
1 2 3 4 5 6 7 8 a b c d e f g h I use bfs like spfa and work in 0.031S Apply the GOOD JOB for College ACMers to Make Large Money and Become a Millionaire Hello, We need large no. of dedicated and hard working ACMers. The payment is good so we need ACMers to be efficient. All you have to do to get the job is to sign up at our websites. The link of our websites are given below. http://www.PaisaLive.com/register.asp?3556638-4847933 After the registration, a confirmation email will be sent to your specified email address. Please click on the link inside the confirmation email to activate your account and recieve ACM work instantly. For any other queries you can mail the administrator. Miss Juliet Admin paisalive.com Hello, everybody! I tryed to solve this problem for a week. I DO NOT KNOW WHAT TO DO. I can't think out anything :( Thanks. Dijkstra, Dijkstra... You can make a graph, where every vertex defines a state of the cube (I mean position and rotation) and every edge defines how much does it cost to move from one position to the other, then use Dijkstra, Bellman or whatever you want. I think it will help. Edited by author 02.02.2005 21:21 I think BFS is useable too! I think you can write that iff you have already accepted your solution. I think you can use BFS if numbers on top, bottom, left, right, front and back sides of cube are equal, else Dijkstra or bruteforce :) Chess notation in this problem is standard chess notation. But the statement can be unclear because "forward side" of cube here means "nearest" to us (to 1st row). I've changed "forward side" to "near side" and "backward side" to "far side". Does it make the statement better? Maybe it is even better to describe "near side" as the one facing the first row, but the new version is also good enough. does anyone know what's the Test 5 ? Or can sent some tests. Thx Edited by author 28.10.2009 16:46 For every point on the board, we change it into 24 different points in our graph. Every point means a state where the cube move onto it, eg (a,b) means "a" at bottom and "b" at front. Weights are the numbers on the bottom. Use dijkstra at last. Start dfs from starting node and when you crossed through some node more than 2 then return. I used SPFA, but failed in test 8. Who can help me? #include <stdio.h> #include <string.h> #define INF 0x3f3f3f3f int op[] = {0, 2, 1, 5, 6, 3, 4}; int r[7][7] = { {0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 4, 5, 6, 3}, {0, 0, 0, 6, 3, 4, 5}, {0, 6, 4, 0, 1, 0, 2}, {0, 3, 5, 2, 0, 1, 0}, {0, 4, 6, 0, 2, 0, 1}, {0, 5, 3, 1, 0, 2, 0} }; struct State { int x, y, b, f; //表示坐标(x, y)和底面和前面上的标号 } beg, end, que[24*8*8*100]; bool inque[9][9][7][7]; int dist[9][9][7][7], a[7], path[24*8*8*2]; int ans = 1000000000, last; char s1[4], s2[4]; void eval(State &s, int x, int y, int b, int f) { s.x = x, s.y = y, s.b = b, s.f = f; } bool check(State &s) { if (s.x == 0 || s.x > 8 || s.y == 0 || s.y > 8) return 0; return 1; } void SPFA() { int closed = 0, open = 2; memset(dist, 0x3f, sizeof(dist)); eval(que[1], beg.x, beg.y, beg.b, beg.f); inque[beg.x][beg.y][beg.b][beg.f] = 1; dist[beg.x][beg.y][beg.b][beg.f] = 0; do { closed++; inque[que[closed].x][que[closed].y][que[closed].b][que[closed].f] = 0; if (que[closed].x == end.x && que[closed].y == end.y && dist[que[closed].x][que[closed].y][que[closed].b][que[closed].f] < ans) { ans = dist[que[closed].x][que[closed].y][que[closed].b][que[closed].f]; last = closed; } State newst; // forward eval(newst, que[closed].x, que[closed].y-1, que[closed].f, op[que[closed].b]); if (check(newst)) { if (dist[newst.x][newst.y][newst.b][newst.f] > dist[que[closed].x][que[closed].y][que[closed].b][que[closed].f] + a[newst.b]) { dist[newst.x][newst.y][newst.b][newst.f] = dist[que[closed].x][que[closed].y][que[closed].b][que[closed].f] + a[newst.b]; if (!inque[newst.x][newst.y][newst.b][newst.f]) { inque[newst.x][newst.y][newst.b][newst.f] = 1; que[open] = newst; path[open] = closed; open++; } } } // right eval(newst, que[closed].x+1, que[closed].y, r[que[closed].b][que[closed].f], que[closed].f); if (check(newst)) { if (dist[newst.x][newst.y][newst.b][newst.f] > dist[que[closed].x][que[closed].y][que[closed].b][que[closed].f] + a[newst.b]) { dist[newst.x][newst.y][newst.b][newst.f] = dist[que[closed].x][que[closed].y][que[closed].b][que[closed].f] + a[newst.b]; if (!inque[newst.x][newst.y][newst.b][newst.f]) { inque[newst.x][newst.y][newst.b][newst.f] = 1; que[open] = newst; path[open] = closed; open++; } } } // backward eval(newst, que[closed].x, que[closed].y+1, op[que[closed].f], que[closed].b); if (check(newst)) { if (dist[newst.x][newst.y][newst.b][newst.f] > dist[que[closed].x][que[closed].y][que[closed].b][que[closed].f] + a[newst.b]) { dist[newst.x][newst.y][newst.b][newst.f] = dist[que[closed].x][que[closed].y][que[closed].b][que[closed].f] + a[newst.b]; if (!inque[newst.x][newst.y][newst.b][newst.f]) { inque[newst.x][newst.y][newst.b][newst.f] = 1; que[open] = newst; path[open] = closed; open++; } } } // left eval(newst, que[closed].x-1, que[closed].y, op[r[que[closed].b][que[closed].f]], que[closed].f); if (check(newst)) { if (dist[newst.x][newst.y][newst.b][newst.f] > dist[que[closed].x][que[closed].y][que[closed].b][que[closed].f] + a[newst.b]) { dist[newst.x][newst.y][newst.b][newst.f] = dist[que[closed].x][que[closed].y][que[closed].b][que[closed].f] + a[newst.b]; if (!inque[newst.x][newst.y][newst.b][newst.f]) { inque[newst.x][newst.y][newst.b][newst.f] = 1; que[open] = newst; path[open] = closed; open++; } } } } while (closed < open); } void print(int i) { if (que[i].x == beg.x && que[i].y == beg.y) { printf("%d %c%d", ans+a[beg.b], beg.x+'a'-1, beg.y); return; } print(path[i]); printf(" %c%d", que[i].x+'a'-1, que[i].y); } int main() { scanf("%s%s%d%d%d%d%d%d", s1, s2, &a[1], &a[2], &a[3], &a[4], &a[5], &a[6]); beg.x = s1[0] - 'a' + 1; beg.y = s1[1] - '0'; beg.b = 5; beg.f = 1; end.x = s2[0] - 'a' + 1; end.y = s2[1] - '0'; SPFA(); print(last); printf("\n"); return 0; } Strange... Solving this problem I thought that rows are numbered from bottom to top. please give me test case, where my prog files, I've tested it on my friend's AC code and did not find mistake thanks. #include <iostream> #include <string> #include <vector> #include <algorithm> #include <map> #include <set> #define VI vector<int> using namespace std; map< VI , int > mp[10][10]; int p[4][6] = { {2 , 4 , 1 , 3 , 0 , 5}, // forw {4 , 2 , 0 , 3 , 1 , 5},//backw {0 , 1 , 5 , 2 , 3 , 4}, // left {0 , 1 , 3 , 4 , 5 , 2} // right }; int t[4][2] = {{0,1},{0,-1},{-1,0},{1 , 0}}; string s1 , s2; int xst , yst , xfin , yfin , i , j , n , m , a[10] , st , fin , x , y , ans = 1000000000 , nom , xx , yy; struct str { int x , y; vector<int> v; str(){ x = y = 0; } str(int _x , int _y , vector<int> _v) { x = _x; y = _y; v = _v; } }; bool operator < (str a , str b) { return a.x < b.x || a.x == b.x && a.y < b.y || a.x == b.x && a.y == b.y && a.v < b.v; } bool operator == (str a , str b) { return a.x == b.x && a.y == b.y && a.v == b.v; } set<pair<int , str> > stt; map<str , str> par; void findans(str n) { if (n.x == xst && n.y == yst && mp[n.x][n.y][n.v] == a[4]); else findans(par[n]); cout<<char(n.x + 'a' - 1)<<char(n.y + '0')<<" "; } int main() { cin>>s1>>s2; xst = s1[0] - 'a' + 1; yst = s1[1] - '0'; xfin = s2[0] - 'a' + 1; yfin = s2[1] - '0'; for (i = 0; i < 6; i++) cin>>a[i]; if (s1 == s2) { cout<<a[4]<<" "<<s1; return 0; } vector<int> v(a , a + 6);
vector<int> sle = v; sort(sle.begin() , sle.end()); do { for (i = 1; i <= 8; i++) for (j = 1; j <= 8; j++) { mp[i][j][sle] = 110000000; stt.insert(make_pair(110000000 , str(i,j,sle))); } } while (next_permutation(sle.begin() , sle.end())); mp[xst][yst][v] = a[4]; stt.erase( stt.find(make_pair(110000000 , str(xst,yst,v))) ); stt.insert(make_pair(a[4] , str(xst,yst,v))); str stans; while (1) { str w = stt.begin()->second; int dis = stt.begin()->first; if (dis == 110000000) break; x = w.x; y = w.y; VI b = w.v , c(6);
for (i = 0; i < 4; i++) { xx = x + t[i][0]; yy = y + t[i][1]; if (xx >= 1 && xx <= 8 && yy >= 1 && yy <= 8); else continue; for (j = 0; j < 6 ; j++) { c[p[i][j]] = b[j]; } if (mp[xx][yy][c] > dis + c[4]) { mp[xx][yy][c] = dis + c[4]; par[str(xx , yy , c)] = w; stt.insert(make_pair(dis + c[4] , str(xx , yy , c))); if (xx == xfin && yy == yfin && mp[xx][yy][c] < ans) { ans = dis + c[4]; stans = str(xx ,yy , c); } } }
stt.erase(stt.find(make_pair(dis , w)));
} cout<<ans<<" "; findans(stans); return 0; } |
|